
Een van de taken van de kernel is het besturen van de

hardware in onze computer. Om de kernel minder groot en

vooral veel flexibeler te maken is men overgestapt op het

modulariseren van de kernel. Vooral zaken die niet tijdens het

opstarten nodig zijn, kunnen in een module gecompileerd wor-

den en later of tijdens het bootproces geladen worden. Op

deze manier is het mogelijk drivers te starten, stoppen en wij-

zingen terwijl het systeem gewoon blijft draaien, of is het

mogelijk gedeelten van de kernel alleen maar te laden wan-

neer daar behoefte aan is.

In dit artikel probeer ik een idee te geven wat zo’n driver nu

eigenlijk doet. Het doel is het aansturen van een aantal LED’s

die via de printerpoort zijn aangesloten.

Nodes
Alle devices kunnen worden beschouwd als speciale files.

Deze files staan in de directory /dev. Wanneer je in deze

directory kijkt, zul je zien dat deze files geen lengte hebben,

maar wel een zogenaamd Major en Minor nummer. Deze termi-

nologie stamt nog uit de tijd dat bij grote computersystemen

meerdere interfaces op een kaart waren ondergebracht. Zo

hebben we op mijn werk op een bepaalde machine een inter-

facekaart met 8 RS232 poorten erop (8 LAS kaart). Zo’n kaart

heeft dan een Major nummer en elke RS232 aansluiting heeft

een ander Minor nummer. Voor elk ervan wordt dus een nieu-

we node aangemaakt.

Wanneer je ls -l /dev/lp* intikt dan krijg je alle nodes te

zien die naar de LPT driver verwijzen. Zij hebben allemaal

Major nummer 6 en een verschillend Minor nummer. Ook kun

je voor de permissiebits zien dat het om een character device

gaat. Voor onze driver heb ik het major nummer 63 gekozen

september 200120

kerneldriver
Voor de meeste Linux gebruikers, is de kernel een

groot geheim dat als een noodzakelijk kwaad

wordt gezien. In het verleden was het echter

noodzakelijk om zelf in de kernel te knutselen om

bijvoorbeeld sommige soundkaarten en tapedrivers

aan de praat te krijgen. Tegenwoordig is dit echter

niet altijd meer nodig.
Auteur: Pascal Schiks

(die is kennelijk nog vrij). Door het commando mknod -m

766 /dev/lptdrv u 63 0 met root rechten uit te voeren

wordt de node aangemaakt.

Modules
Kernel drivers kunnen direct in de kernel worden meegecom-

pileerd of als module worden geladen. Het heeft echter alleen

zin om een driver direct in de kernel te laden wanneer deze

tijdens boottime al nodig is, zoals bijvoorbeeld de driver voor

de harde schijf en console. Je soundkaart of netwerk interface

heb je pas later nodig (ehhh… tenzij je via een netwerk boot

of tijdens het booten MP3 bestandjes wil afspelen). In ons

geval is het dus eigenlijk alleen interessant om de driver als

module te laten laden. Een driver vast meelinken in de kernel

is overigens vrij eenvoudig te realiseren

Een kernel module is een gewoon object file die minimaal aan

de volgende voorwaarden moet voldoen. Vooraan in de source

code dienen de volgende declaraties te staan

#define __KERNEL__

#define MODULE

#include <linux/kernel.h>

#include <linux/module.h>

Verder moeten er minimaal de volgende twee functies bestaan

int init_module(void);

void cleanup_module(void);

De twee defines informeren de compiler dat het gaat om een

kernel module De twee includes zijn nodig om een aantal

structures te definiëren die binnen de module nodig zijn.

De functie init_module wordt aangeroepen bij het laden van

de module en de ten slotte wordt de functie cleanup_module

aangeroepen wanneer de module uit het geheugen wordt

verwijderd.

De allereenvoudigste module zal er dus als volgt uit kunnen

zien.

#define __KERNEL__

#define MODULE

#include <linux/kernel.h>

#include <linux/module.h>

Geheimzinnige eenvoud van een

kerneldriver2 17-09-2001 12:16 Pagina 20

september 2001 21

int init_module(void)

{

printk(“Mijn module wordt geladen\n”);

}

void cleanup_modules(void)

{

printk(“Mijn module wordt verwijderd\n”);

}

De functie printk is gedefinieerd in linux/kernel.h en

werkt vrijwel hetzelfde als de c functie printf.

Compileren van een module
Om onze module te compileren, gebruiken we de GNU C com-

piler Het commando om de module te compileren wordt dan

gcc mijnmodule.c -O2 -c -o mijnmodule.o

De parameter -O2 is een optimalisatie die nodig is om even-

tuele macro‘s correct te behandelen (omdat er later niet

meer echt gelinkt wordt, moet dat nu gebeuren) De parame-

ter -c vertelt de compiler dat de output objectcode moet

worden, die normaliter later nog gelinkt kan worden. Maar

omdat het een module betreft gebeurt dat niet. Ten slotte

wordt met de instructie -o mijn module.o de naam van

het resultaat bepaald.

Wellicht is het handig om de compileer-opdracht in een

Makefile te zetten zodat enkel de opdracht make voldoende is

om het programma te compileren.

Starten en stoppen
Het laden en verwijderen van een kernel module is enkel aan

root voorbehouden. Het gaat tenslotte om een handeling die

het systeem behoorlijk kan aantasten. Om de module te laden

moet dus eerst ingelogd worden als root of deze rechten door

middel van het su commando worden verkregen.

Daarna kan de module gestart worden met het volgende com-

mando:

insmod mijnmodule.o

De welkomstboodschap wordt nu getoond, en het commando

lsmod laat zien dat de module geladen is. Ook is het bericht-

je terug te vinden in het bestand /var/syslog.

Met het commando rmmod mijnmodule wordt de module

weer uit het geheugen verwijderd.

File operations
Nu wordt het tijd dat we de module enige functionaliteit

geven. Een driver kan worden behandeld als een file en er

kunnen dus ook file operaties op los worden gelaten. De ope-

raties die we nu zullen implementeren zijn open, close en

write. Voor elk van deze operaties moeten we een functie

maken en deze vervolgens bij het besturingssysteem (Linux)

registreren. Om dit voor elkaar te krijgen is er in

linux/fs.h de structure file_operations gedefinieerd. In

deze structure kunnen we voor alle gewenste operaties een

functienaam invullen. Voor de overige functies vullen we

gewoon NULL in.

Onze declaratie voor de file operations ziet er dan als volgt

uit:

static struct file_operations lptdrv_�

operations =

{

NULL, /* lseek */

NULL, /* read */

lptread_write, /* write */

NULL, /* read dir */

NULL, /* poll */

NULL, /* IOctl */

NULL, /* mmap */

lptread_open, /* open */

NULL, /* flush */

lptread_close, /* release */

NULL, /* fsync */

NULL, /* fasync */

NULL, /* check media change */

NULL, /* revalidate */

NULL, /* lock */

};

In de init_module functie kunnen we nu deze functies registre-

ren zodat ze bij de kernel bekend zijn. Dit gaat op de volgende

manier:

register_chrdev(MAJOR_NR,NODENAME,&lptdrv_�

operations);

^Let op: met verschillende kernelversies veranderen de
structuren en functie declaraties zoals gedefinieerd in

de include files nogal eens. Dit heeft o.a. tot gevolg dat de
voorbeeldjes uit het verder overigens zeer interessante boek
van Alessandro Rubini niet op de latere kernels te compileren

zijn. Mijn programma heb ik getest op kernel 2.2.x series.

Output naar de printerpoort
De geregistreerde functies moeten nog wel eerst gemaakt

worden. Dit is dus waar het eigenlijk om gaat. We beginnen

met de meest interessante, n.l. de functie lptdrv_write

De declaratie is als volgt:

kerneldriver2 17-09-2001 12:16 Pagina 21

ssize_t lptread_write(struct file *filehand�

le, const char *data_buffer,size_t �

buff_size,loff_t *buff_ptr)

Als eerste parameter wordt de filehandle meegegeven. Dit is

dezelfde filehandle als die van het programma dat het device

probeert aan te spreken. Het is tenslotte zo dat onze driver de

andere kant van het operatingsystem vormt en dus uiteindelijk

datgene moet doen wat door de user functies open, write en

close gevraagd wordt. De tweede parameter is het adres in

userspace waar de te versturen informatie staat. Hier stuiten

we ineens op een vervelend probleem: zoals een gewone

gebruiker niet aan kernel memory mag en kan komen, zo kan

de kernel niet aan userspace komen. Om toch aan de aldaar

opgeslagen informatie te komen is er een workaround in de

vorm van de macro __get_user gemaakt. Met deze functie is

het mogelijk om data vanuit userspace naar kernelspace te

halen. De instructie:

__get_user(data,data_buffer);

kopieert een byte vanuit userspace naar data zodat we de ver-

kregen informatie vervolgens kunnen gebruiken om deze op

de volgende manier naar de LPT poort te sturen:

outb(data,LPTADDR);

Bij het verlaten van de functie moet het aantal succesvol ver-

stuurde bytes teruggemeld worden met behulp van de return

instructie.

De functies lptdrv_open en lptdrv_close moeten het

device (de LED’s) initialiseren. Nu ja… daar valt weinig anders

aan te initialiseren dan het netjes uitzetten van de LED’s. Dus

deze functies zijn vrijwel identiek en doen eigenlijk alleen maar

een paar outb instructies die welhaast voor zich spreken.

ssize_t lptread_open(struct inode *inodeptr,�

struct file *filehandle)

{

outb(0x0C,LPTCTL); /* Zet de groene LED �

aan */

return 0;

}

ssize_t lptdrv_close(struct inode *node, �

struct file *filehandle)

{

outb(0,LPT); /* zet alle rode LED’s �

uit */

outb(0x0D,LPTCTL); /* zet de groene LED �

uit */

return 0;

}

Hiermee is onze driver eigenlijk compleet. De complete code

hoef je niet in te tikken maar kun je gewoon downloaden

vanaf: www.linuxmag.nl of www.nedlinux.nl
Bij de tar.gz file zit ook een eenvoudig programmaatje om de

driver te testen door de lampjes om beurten te laten branden.

Ook kun je de driver snel even testen door er een bestandje

naar toe te kopiëren met cp mijnbestand /dev/lptdrv

maar omdat na het sluiten van de file de LED’s weer uit-

gaan, zul je daar niet veel van zien. Natuurlijk is deze beschrij-

ving heel erg basic en gaat niet al te diep op problemen in. Zo

is mijn driver nog niet in staat om meerdere lpt kaarten van

hetzelfde type te herkennen en te benutten. En ook vertel ik

het operating system niet correct hoeveel data ik nu eigenlijk

verstuurd heb. Maar het geeft wellicht toch een inzicht hoe

zo’n driver werkt.

Wanneer je er meer over wilt weten kan ik het boek ‘Linux

device drivers’ van Allessandro Rubini (O’Reily uitgeverij) aan-

raden.

Dit boek is weliswaar voornamelijk op de 2.0 kernels geënt,

maar wanneer je daar rekening mee houdt, maakt dat verder

weinig uit.

Geheimzinnige eenvoud van een kerneldriver

Testen

Om de LEDdriver te testen heb ik het programmaatje

drvtest.c geschreven. Het opent de special file

/dev/lptdrv die de LEDdriver verbindt en laat de LEDs

om beurten oplichten. Vervolgens wilde ik er ook

een praktische toepassing voor bedenken. Dus heb

ik mdmlts.c bedacht. Dit programma laat de LEDs

werken als modemledjes. Voor het compileren moet

je even het poortnummer (line 13) aanpassen met

het poortnummer van je modem. Het programma

betrekt zijn informatie uit de /proc directory.

Wanneer het modem twee minuten lang geen acti-

viteit vertoont, dan gaat het programma in demo

mode. Gebruik makend van de tabel op regel 29

worden er dan diverse patroontjes op de LEDs geto-

verd. Zelf heb ik dit programma op mijn Slackware

systeem in het bestand /etc/rc.d/rc.M gezet door er

de volgende regel in toe te voegen /usr/bin/mdmlts

&. De & erachter zorgt ervoor dat het als achter-

grond taak wordt opgestart.

De source code van het hele spul kun je via internet

downloaden op www.linuxmag.nl en op www.nedli-

nux.nl. Het is in een gezipt tar bestandje gezet na

het downloaden tik je in tar -zxvf lptdrv.tgz

Er wordt dan een directory met de bestandjes aan-

gemaakt een make opdracht in deze directory is vol-

doende om het spul te compileren.

kerneldriver2 17-09-2001 12:16 Pagina 23

