rerrnelr ari vel

1L/-VUJd-UUL 1. 10 Fayllla U

Voor de meeste Linux gebruikers, is de kernel een
groot geheim dat als een noodzakelijk kwaad
wordt gezien. In het verleden was het echter
noodzakelijk om zelf in de kernel te knutselen om
bijvoorbeeld sommige soundkaarten en tapedrivers

aan de praat te krijgen. Tegenwoordig is dit echter
niet altijd meer nodig.

Auteur: Pascal Schiks

Een van de taken van de kernel is het besturen van de
hardware in onze computer. Om de kernel minder groot en
vooral veel flexibeler te maken is men overgestapt op het
modulariseren van de kernel. Vooral zaken die niet tijdens het
opstarten nodig zijn, kunnen in een module gecompileerd wor-
den en later of tijdens het bootproces geladen worden. Op
deze manier is het mogelijk drivers te starten, stoppen en wij-
zingen terwijl het systeem gewoon blijft draaien, of is het
mogelijk gedeelten van de kernel alleen maar te laden wan-
neer daar behoefte aan is.

In dit artikel probeer ik een idee te geven wat zo’n driver nu
eigenlijk doet. Het doel is het aansturen van een aantal LED’s
die via de printerpoort zijn aangesloten.

Nodes

Alle devices kunnen worden beschouwd als speciale files.
Deze files staan in de directory / dev. Wanneer je in deze
directory kijkt, zul je zien dat deze files geen lengte hebben,

maar wel een zogenaamd Major en Minor nummer. Deze termi-

nologie stamt nog uit de tijd dat bij grote computersystemen
meerdere interfaces op een kaart waren ondergebracht. Zo
hebben we op mijn werk op een bepaalde machine een inter-
facekaart met 8 RS232 poorten erop (8 LAS kaart). Zo’n kaart
heeft dan een Major nummer en elke RS232 aansluiting heeft
een ander Minor nummer. Voor elk ervan wordt dus een nieu-
we node aangemaakt.

Wanneer je s -1 /dev/| p* intikt dan krijg je alle nodes te
zien die naar de LPT driver verwijzen. Zij hebben allemaal
Major nummer 6 en een verschillend Minor nummer. Ook kun
je voor de permissiebits zien dat het om een character device
gaat. Voor onze driver heb ik het major nummer 63 gekozen

—

—P—

(die is kennelijk nog vrij). Door het commando mknod -m
766 /dev/Iptdrv u 63 0 metroot rechten uit te voeren
wordt de node aangemaakt.

Modules

Kernel drivers kunnen direct in de kernel worden meegecom-
pileerd of als module worden geladen. Het heeft echter alleen
zin om een driver direct in de kernel te laden wanneer deze
tijdens boottime al nodig is, zoals bijvoorbeeld de driver voor
de harde schijf en console. Je soundkaart of netwerk interface
heb je pas later nodig (ehhh... tenzij je via een netwerk boot
of tijdens het booten MP3 bestandjes wil afspelen). In ons
geval is het dus eigenlijk alleen interessant om de driver als
module te laten laden. Een driver vast meelinken in de kernel
is overigens vrij eenvoudig te realiseren

Een kernel module is een gewoon object file die minimaal aan
de volgende voorwaarden moet voldoen. Vooraan in de source
code dienen de volgende declaraties te staan

#define __ KERNEL_
#defi ne MODULE

#i ncl ude <l inux/kernel.h>
#i ncl ude <l i nux/modul e. h>

Verder moeten er minimaal de volgende twee functies bestaan

int init_nodul e(void);
voi d cl eanup_nodul e(void);

De twee defines informeren de compiler dat het gaat om een
kernel module De twee includes zijn nodig om een aantal
structures te definiéren die binnen de module nodig zijn.

De functie init_module wordt aangeroepen bij het laden van
de module en de ten slotte wordt de functie cleanup_module
aangeroepen wanneer de module uit het geheugen wordt
verwijderd.

De allereenvoudigste module zal er dus als volgt uit kunnen
zien.

#define __ KERNEL_

#defi ne MODULE

#i ncl ude <l i nux/kernel.h>
#i ncl ude <l i nux/nodul e. h>

rerrnelr ari vel

1L/-VUI-UUL 1. 10 Fayllia <1

—P—

int init_nodul e(void)
{

printk(“Mjn nodul e wordt gel aden\n”);

voi d cl eanup_nodul es(voi d)

{

printk(“Mjn nmodul e wordt verw jderd\n”);

De functie printk is gedefinieerd in | i nux/ kernel . h en
werkt vrijwel hetzelfde als de c functie printf.

Compileren van een module
Om onze module te compileren, gebruiken we de GNU C com-
piler Het commando om de module te compileren wordt dan

gcc mjnmodule.c -O2 -c -0 mjnnodul e.o

De parameter -O2 is een optimalisatie die nodig is om even-
tuele macro‘s correct te behandelen (omdat er later niet
meer echt gelinkt wordt, moet dat nu gebeuren) De parame-
ter - ¢ vertelt de compiler dat de output objectcode moet
worden, die normaliter later nog gelinkt kan worden. Maar
omdat het een module betreft gebeurt dat niet. Ten slotte
wordt met de instructie -o mi jn nodul e. o de naam van
het resultaat bepaald.

Wellicht is het handig om de compileer-opdracht in een
Makefile te zetten zodat enkel de opdracht make voldoende is
om het programma te compileren.

Starten en stoppen

Het laden en verwijderen van een kernel module is enkel aan
root voorbehouden. Het gaat tenslotte om een handeling die
het systeem behoorlijk kan aantasten. Om de module te laden
moet dus eerst ingelogd worden als root of deze rechten door
middel van het su commando worden verkregen.

Daarna kan de module gestart worden met het volgende com-
mando:

insnod m j nnodul e. o

De welkomstboodschap wordt nu getoond, en het commando
| snod laat zien dat de module geladen is. Ook is het bericht-
je terug te vinden in het bestand / var/ sysl og.

Met het commando r mmod mi j nnodul e wordt de module
weer uit het geheugen verwijderd.

File operations

Nu wordt het tijd dat we de module enige functionaliteit
geven. Een driver kan worden behandeld als een file en er
kunnen dus ook file operaties op los worden gelaten. De ope-

raties die we nu zullen implementeren zijn open, close en
write. Voor elk van deze operaties moeten we een functie
maken en deze vervolgens bij het besturingssysteem (Linux)
registreren. Om dit voor elkaar te krijgen is er in

I'i nux/fs.h de structure file_operations gedefinieerd. In
deze structure kunnen we voor alle gewenste operaties een
functienaam invullen. Voor de overige functies vullen we
gewoon NULL in.

Onze declaratie voor de file operations ziet er dan als volgt
uit:

static struct file_operations |ptdrv_¢&
operations =

{
NULL, /* | seek */
NULL, /* read */
| ptread_write, /* wite */
NULL, /* read dir */
NULL, /* poll */
NULL, /* 1Cctl */
NULL, /* mmap */
| ptread_open, /* open */
NULL, /* flush */
| ptread_cl ose, /* rel ease */
NULL, /* fsync */
NULL, /* fasync */
NULL, /* check nedia change */
NULL, /* revalidate */
NULL, /* lock */

b

In de init_module functie kunnen we nu deze functies registre-
ren zodat ze bij de kernel bekend zijn. Dit gaat op de volgende
manier:

regi st er _chrdev(MAJOR_NR, NODENAME, &l ptdrv_<¢
operations);

@LET oP: met verschillende kernelversies veranderen de
structuren en functie declaraties zoals gedefinieerd in
de include files nogal eens. Dit heeft o.a. tot gevolg dat de
voorbeeldjes uit het verder overigens zeer interessante boek
van Alessandro Rubini niet op de latere kernels te compileren

zijn. Mijn programma heb ik getest op kernel 2.2.x series.

Output naar de printerpoort

De geregistreerde functies moeten nog wel eerst gemaakt
worden. Dit is dus waar het eigenlijk om gaat. We beginnen
met de meest interessante, n.l. de functie Iptdrv_write

De declaratie is als volgt:

rerrnelr ari vel

1L/-VUJd-UUL 1. 10 Faylllda 5

— P

Geheimzinnige eenvoud van een kerneldriver

ssize_t Iptread_wite(struct file *filehandd
|l e, const char *data_buffer,size t &
buf f_size,lof f_t *buff_ptr)

Als eerste parameter wordt de filehandle meegegeven. Dit is
dezelfde filehandle als die van het programma dat het device
probeert aan te spreken. Het is tenslotte zo dat onze driver de
andere kant van het operatingsystem vormt en dus uiteindelijk
datgene moet doen wat door de user functies open, write en
close gevraagd wordt. De tweede parameter is het adres in
userspace waar de te versturen informatie staat. Hier stuiten
we ineens op een vervelend probleem: zoals een gewone
gebruiker niet aan kernel memory mag en kan komen, zo kan
de kernel niet aan userspace komen. Om toch aan de aldaar
opgeslagen informatie te komen is er een workaround in de
vorm van de macro __get_user gemaakt. Met deze functie is
het mogelijk om data vanuit userspace naar kernelspace te
halen. De instructie:

__get_user(data,data_buffer);

kopieert een byte vanuit userspace naar data zodat we de ver-
kregen informatie vervolgens kunnen gebruiken om deze op
de volgende manier naar de LPT poort te sturen:

out b(dat a, LPTADDR) ;

Bij het verlaten van de functie moet het aantal succesvol ver-
stuurde bytes teruggemeld worden met behulp van de return
instructie.

De functies | pt drv_open en | ptdrv_cl ose moeten het
device (de LED’s) initialiseren. Nu ja... daar valt weinig anders
aan te initialiseren dan het netjes uitzetten van de LED’s. Dus
deze functies zijn vrijwel identiek en doen eigenlijk alleen maar
een paar out b instructies die welhaast voor zich spreken.

ssize_t |ptread_open(struct inode *inodeptr, ¢

struct file *filehandle)
{

out b(0x0C, LPTCTL); /* Zet de groene LED ¢
aan */

return O;

}

ssize_t |ptdrv_close(struct inode *node, &

struct file *filehandle)

{
out b(0, LPT); /* zet alle rode LED s &
uit */
out b(0x0D, LPTCTL); /* zet de groene LED ¢
uit */
return O;
}

Hiermee is onze driver eigenlijk compleet. De complete code
hoef je niet in te tikken maar kun je gewoon downloaden
vanaf: WWW.LINUXMAG.NL Of WWW.NEDLINUX.NL

Bij de tar.gz file zit ook een eenvoudig programmaatje om de
driver te testen door de lampjes om beurten te laten branden.
Ook kun je de driver snel even testen door er een bestandje
naar toe te kopiéren met cp mij nbestand /dev/|ptdrv
maar omdat na het sluiten van de fi | e de LED’s weer uit-
gaan, zul je daar niet veel van zien. Natuurlijk is deze beschrij-
ving heel erg basic en gaat niet al te diep op problemen in. Zo
is mijn driver nog niet in staat om meerdere Ipt kaarten van
hetzelfde type te herkennen en te benutten. En ook vertel ik
het operating system niet correct hoeveel data ik nu eigenlijk
verstuurd heb. Maar het geeft wellicht toch een inzicht hoe
zo’n driver werkt.

Wanneer je er meer over wilt weten kan ik het boek ‘Linux
device drivers’ van Allessandro Rubini (O’Reily uitgeverij) aan-
raden.

Dit boek is weliswaar voornamelijk op de 2.0 kernels geént,
maar wanneer je daar rekening mee houdt, maakt dat verder
weinig uit.

Testen

Om de LEDdriver te testen heb ik het programmaatje
drvtest.c geschreven. Het opent de special file
/dev/Iptdrv die de LEDdriver verbindt en laat de LEDs
om beurten oplichten. Vervolgens wilde ik er ook
een praktische toepassing voor bedenken. Dus heb
ik mdmlts.c bedacht. Dit programma laat de LEDs
werken als modemledjes. Voor het compileren moet
je even het poorthnummer (line 13) aanpassen met
het poortnummer van je modem. Het programma
betrekt zijn informatie uit de /proc directory.
Wanneer het modem twee minuten lang geen acti-
viteit vertoont, dan gaat het programma in demo
mode. Gebruik makend van de tabel op regel 29

worden er dan diverse patroontjes op de LEDs geto-
verd. Zelf heb ik dit programma op mijn Slackware
systeem in het bestand /etc/rc.d/rc.M gezet door er
de volgende regel in toe te voegen /usr/bin/mdmlts
&. De & erachter zorgt ervoor dat het als achter-
grond taak wordt opgestart.

De source code van het hele spul kun je via internet
downloaden op www.linuxmag.nl en op www.nedli-
nux.nl. Het is in een gezipt tar bestandje gezet na
het downloaden tik je in tar -zxvf Iptdrv.tgz

Er wordt dan een directory met de bestandjes aan-
gemaakt een make opdracht in deze directory is vol-
doende om het spul te compileren.

